Claves para implementar la inteligencia artificial en la empresa con eficacia
- Actualidad
Las previsiones de IDC son que el uso de la inteligencia artificial crezca a buen ritmo tanto en España como en el mundo. Sin embargo, gran parte de los proyectos fallan. Entre los factores que hay que tener en cuenta para minimizar el riesgo de fracaso se encuentran la selección del equipo adecuado, la elección adecuada de las iniciativas y la búsqueda de promotores y apoyos para la iniciativa.
El gasto en soluciones de inteligencia artificial crecerá a escala mundial casi un 20% en 2022, según los cálculos de IDC y, en España, lo hará a un ritmo anual del 27% hasta 2025. Sin embargo, el 85% de los proyectos de Inteligencia Artificial fracasan, según el psicólogo y profesor de la Universidad de Harvard Howard Gardner.
Francisco Díaz, business analyst en Compensa Capital Humano, del grupo Howden, recomienda buscar un promotor interno para el proyecto, colaborar con los responsables de data, realizar una selección óptima de las iniciativas de Machine Learning, confeccionar un acta de constitución del proyecto, seleccionar un equipo con los perfiles adecuados, involucrar a los stakeholders y mantener un seguimiento constante. Examinemos estas recomendaciones una a una:
Buscar un promotor interno para el proyecto
Una de las causas principales de fracaso en los proyectos de AI es la falta de soporte y liderazgo. Las iniciativas en este campo son muy atractivas, pero sus probabilidades de fracaso son altas. Por ello, es deseable crear un prototipo que ilustre el concepto, sin necesidad de emplear todos los recursos, y ayude a vislumbrar sus resultados.
Colaboración en la data
La Inteligencia Artificial se basa en los datos y, en mayor o menor medida, la empresa tendrá personas o grupos que manejen información necesaria para el proyecto. Por lo que tiene que haber alguien en disposición de pedirles esta información. La falta de colaboración es otra de las causas de fracaso más frecuentes y se manifestará también en la reticencia a asignar recursos al proyecto para una gran variedad de tareas a ejecutar fuera del desarrollo en sí.
Selección óptima de las iniciativas de Machine Learning
Un proyecto de estas características requiere de una inversión en recursos, que necesitarán estar bien planificados para justificar su coste. En la propuesta es preferible centrarse en la problemática de negocio que resuelven en vez de en las características tecnológicas. Además, deberá incluir un ROI (retorno de la inversión) aproximado, el tiempo de comercialización de la idea, el esfuerzo estimado y los escollos que habrá que salvar. Sin olvidar un análisis de viabilidad técnica.
Confeccionar un acta de constitución del proyecto (Project chárter)
La definición del proyecto y de sus requerimientos es trascendental para poder empezar el desarrollo del mismo. Este project chárter debe conocer el alcance del proyecto, qué queremos construir y los objetivos de negocio.
Composición del equipo
Para evitar la falta de experiencia y la desconexión entre desarrollo de software y ciencia de datos hay que definir los perfiles necesarios. Necesitaremos un especialista en data science, pero también un ingeniero de datos (data engineer) con conocimientos de IT y programación más tradicional. Es esencial que intervengan en el equipo expertos de negocio para que puedan ir realizando un seguimiento de los resultados.
No necesariamente tendrán que ser incorporados externamente, muchas veces ya existen recursos en la propia empresa o posibilidades de formación más adecuados.
Involucrar a 'stakeholders'
En la vida útil del proyecto, se van a dar interacciones con una gran variedad de profesionales y proveedores que se deben de gestionar adecuadamente. Hay que ser conscientes también de las reticencias que puede ocasionar la AI como sustituto de tareas que actualmente realizan.
Un seguimiento constante
Los problemas no pueden surgir únicamente en la implantación del proyecto, sino que es necesario prestar atención a cómo ejecutar lo que hemos dibujado. Las posibilidades de la inteligencia artificial son infinitas, por lo que es recomendable mantener un alcance conservador e instaurar fases de desarrollo. Además, hay que tener en mente que los proyectos de AI tienen un componente de desarrollo de software, pero que también es importante escoger el método de gestión adecuado.
Por último, el especialista explica que el conjunto de tecnologías y algoritmos que podemos elegir para implementar nuestras soluciones es muy amplio. “Es importante escoger soluciones simples y transparentes, y, sobre todo, que sea fácil de explicar su funcionamiento interno”, concluye.