Acepto

COOKIES

Esta web utiliza cookies técnicas, de personalización y de análisis, propias y de terceros, para anónimamente facilitarle la navegación y analizar estadísticas del uso de la web. Obtener más información

Innovación en inteligencia artificial: una 'lengua electrónica' identifica líquidos en menos de un minuto

  • Actualidad

Hypertaste-IA al gusto

La innovación en inteligencia artificial hace pensar que solo hemos visto una mínima parte de su potencial. Su nueva contribución está relacionada con el sentido del gusto y llega de la mano de los investigadores de IBM en Zúrich, que han creado Hypertaste, una 'lengua electrónica' capaz de probar líquidos gracias a la inteligencia artificial.

IBM Research ha desarrollado Hypertaste, una ‘lengua electrónica’ asistida por inteligencia artificial que, inspirada en el funcionamiento del sentido del gusto humano, permitirá detectar y analizar distintos tipos de líquido rápidamente y sin necesidad de acudir a un laboratorio. Sobra decir que se trata de un nuevo avance en este campo en el que se habían producido importantes innovaciones relacionadas con los sentidos de la vista o el oído, con sistemas de visión artificial o de reconocimiento de imágenes y sonidos, pero no en el ámbito de los sentidos químicos como son el gusto o el olfato.

Con Hypertaste se rompe este límite. Se trata de un pequeño dispositivo de forma circular que se introduce parcialmente en los líquidos que se quieren analizar. Para realizar el análisis y la detección de un fluido, esta ‘lengua electrónica’ utiliza la inteligencia artificial de IBM y un conjunto de sensores electroquímicos multisensitivos, cada uno de ellos formados por pares de electrodos.

Los líquidos complejos contienen muchas moléculas diferentes y es la combinación de todas ellas lo que los distingue unos de otros. Por eso, para poder identificarlos, es necesario analizar sus moléculas en su conjunto. Al igual que el sentido del gusto o el olfato no tiene un receptor para cada molécula de un alimento, sino que reacciona a partir de una combinación específica, los sensores de Hypertaste son capaces de responder simultáneamente a diferentes compuestos químicos. De este modo, a través de la combinación de estos diferentes sensores, se puede realizar un análisis “holístico” del conjunto de componentes de un líquido y hallar su “huella dactilar”.

Todos los datos recogidos se trasladan a través de una aplicación móvil a la nube, donde un algoritmo de aprendizaje automático compara esta huella digital con una base de datos con información sobre líquidos conocidos. El algoritmo determina qué líquidos de la base de datos son similares químicamente al líquido que se está investigando. El resultado obtenido se envía directamente a un dispositivo inteligente, como puede ser un teléfono móvil.

Todo este proceso de identificación dura menos de un minuto, desde el momento en que el dispositivo está en contacto con el líquido hasta que ofrece un resultado. Este es un tiempo récord, especialmente si se tiene en cuenta que los sistemas convencionales de laboratorio suelen requerir horas. Además, por su tamaño reducido, es una herramienta portátil y fácil de usar.

Un aspecto clave en todo este proceso es el “entrenamiento” que recibe el algoritmo de aprendizaje automático que utiliza Hypertaste. Tal como sucede con un sommelier, que con el tiempo y la práctica aprende la complejidad de la degustación del vino, el entrenamiento del sistema es esencial para que pueda identificar los diferentes líquidos y, en este caso, el proceso consiste en medir muchas veces el conjunto de señales de voltaje producido por los sensores del dispositivo. Cada sensor (es decir, cada par de electrodos) reacciona a los iones disueltos en el líquido estudiado con una señal de voltaje. La huella dactilar de un líquido no es más que el resultado de la combinación de todas estas señales de voltaje que el líquido en cuestión genera en los sensores de Hypertaste. En resumen, la tarea de entrenar el algoritmo de IA de Hypertaste se centra en “enseñarle” a reconocer el patrón característico de señales de voltaje de un líquido específico a través de la exposición reiterada (a través de múltiples mediciones) a ese patrón.

Casos de uso
Hypertaste puede ser una solución muy útil para sectores como el farmacéutico o el sanitario o para científicos, ya que puede ayudar a identificar líquidos de una manera rápida, portable y fiable, sin necesidad de tener acceso a laboratorios de alta gama. También puede ser muy útil, por ejemplo, en áreas como calidad o en detección del fraude en ámbitos como la falsificación de bebidas.

Según IBM, en un futuro, Hypertaste podría incluso llegar a detectar la huella digital de otros líquidos todavía más complejos. A largo plazo podría, por ejemplo, tomar muestras de orina de una persona y ayudar a obtener una evaluación de la huella dactilar metabólica, que puede entenderse como la suma de todas las pequeñas moléculas presentes en un organismo vivo. Como esta información química está cambiando constantemente (dependiendo de factores como el estilo de vida o la nutrición) esta huella dactilar metabólica podría ayudar a tener una “instantánea” de la salud de una persona en un momento determinado.